Hodge Theory and Deformed WZW Models

Based on 2112.00031 with Thomas Grimm

Jeroen Monnee
Utrecht University

String Pheno 2022
July 7th 2022

Plan for the talk

Plan for the talk

Plan for the talk

λ-deformed WZW

Plan for the talk

Motivation

In string compactifications, the geometry of the internal space encodes properties of the EFT.

In string compactifications, the geometry of the internal space encodes properties of the EFT.

e.g. Type IIB/F-theory on Calabi-Yau:
flux scalar potential, gauge couplings, BPS masses, etc...

In string compactifications, the geometry of the internal space encodes properties of the EFT.

e.g. Type IIB/F-theory on Calabi-Yau:
flux scalar potential, gauge couplings, BPS masses, etc...

Various frameworks are used:

In string compactifications, the geometry of the internal space encodes properties of the EFT.

> e.g. Type IIB/F-theory on Calabi-Yau: flux scalar potential, gauge couplings, BPS masses, etc...

> Various frameworks are used:

period vector
 $$
\Pi^{I}=\int_{\gamma_{I}} \Omega
$$

In string compactifications, the geometry of the internal space encodes properties of the EFT.
e.g. Type IIB/F-theory on Calabi-Yau: flux scalar potential, gauge couplings, BPS masses, etc...

> Various frameworks are used:

period vector

$$
\Pi^{I}=\int_{\gamma_{I}} \Omega
$$

$$
\begin{gathered}
\text { Hodge structure } \\
H^{3}\left(Y_{3}, \mathbb{C}\right)=\bigoplus_{p+q=3} H^{p, q}
\end{gathered}
$$

In string compactifications, the geometry of the internal space encodes properties of the EFT.
e.g. Type IIB/F-theory on Calabi-Yau:
flux scalar potential, gauge couplings, BPS masses, etc...

Various frameworks are used:

Can think of the period map as a group-valued field on the moduli space, with some gauge symmetry group V .

Can think of the period map as a group-valued field on the moduli space, with some gauge symmetry group V .

Idea: formulate dynamics in terms of a non-linear sigma model [Grimm '20] [Cecotti '20]

The Period Map

Introduce a real, group-valued field

$$
H^{p, q}(x, y)=h(x, y) H_{\mathrm{ref}}^{p, q}
$$

To rephrase the data in the reference Hodge structure, introduce the (reference) charge operator [Robles '16; Kerr, Pearlstein, Robles '19]

$$
\begin{aligned}
Q_{\mathrm{ref}} v & =\frac{1}{2}(p-q) v, \quad v \in H_{\mathrm{ref}}^{p, q}, \quad Q_{\mathrm{ref}} \in i \mathfrak{g} \\
\text { e.g. } & H_{\mathrm{ref}}^{3,0} \text { has `charge' } 3 / 2 .
\end{aligned}
$$

To rephrase the data in the reference Hodge structure, introduce the (reference) charge operator [Robles '16; Kerr, Pearlstein, Robles '19]

$$
\begin{aligned}
Q_{\mathrm{ref}} v & =\frac{1}{2}(p-q) v, \quad v \in H_{\mathrm{ref}}^{p, q}, \quad Q_{\mathrm{ref}} \in i \mathfrak{g} \\
\text { e.g. } & H_{\mathrm{ref}}^{3,0} \text { has `charge' } 3 / 2 .
\end{aligned}
$$

Similarly, get a charge decomposition of operators

$$
\mathcal{O}=\sum_{q} \mathcal{O}_{q}, \quad\left[Q_{\mathrm{ref}}, \mathcal{O}_{q}\right]=q \mathcal{O}_{q}, \quad \mathcal{O} \in \mathfrak{g}_{\mathbb{C}}
$$

$Q_{\text {ref }}: \quad q=3 / 2 \quad q=1 / 2$
$q=-1 / 2$
$q=-3 / 2$

$H=H_{\text {ref }}^{3,0}$

$\oplus \quad H_{\mathrm{ref}}^{0,3}$

$$
\mathcal{O}=\sum_{q} \mathcal{O}_{q}, \quad\left[Q_{\mathrm{ref}}, \mathcal{O}_{q}\right]=q \mathcal{O}_{q}
$$

The period map satisfies the horizontality condition [Griffiths '68; Schmid '73]

$$
h^{-1} \partial_{ \pm} h=\left(h^{-1} \partial_{ \pm} h\right)_{0}+\left(h^{-1} \partial_{ \pm} h\right)_{ \pm 1}
$$

The period map satisfies the horizontality condition [Griffiths '68; Schmid '73]

$$
h^{-1} \partial_{ \pm} h=\left(h^{-1} \partial_{ \pm} h\right)_{0}+\left(h^{-1} \partial_{ \pm} h\right)_{ \pm 1}
$$

A more familiar relation is perhaps
$\Omega \in H^{3,0}, \quad \partial \Omega \in H^{3,0} \oplus H^{2,1}$,
λ-Deformed WZW Models

Action of the λ-deformed WZW model: [Sfetsos '14]

$$
S_{k, \lambda}[g]=S_{\mathrm{WZW}, k}[g]+\lambda \frac{k}{\pi} \int d^{2} \sigma \operatorname{Tr}\left(J_{+}\left(1-\lambda \mathrm{Ad}_{g}\right)^{-1} J_{-}\right)
$$

$$
J_{+}=-\partial_{+} g g^{-1}, \quad J_{-}=g^{-1} \partial_{-} g
$$

Action of the λ-deformed WZW model: [Sfetsos '14]

$$
S_{k, \lambda}[g]=S_{\mathrm{WZW}, k}[g]+\lambda \frac{k}{\pi} \int d^{2} \sigma \operatorname{Tr}\left(J_{+}\left(1-\lambda \mathrm{Ad}_{g}\right)^{-1} J_{-}\right)
$$

$$
J_{+}=-\partial_{+} g g^{-1}, \quad J_{-}=g^{-1} \partial_{-} g
$$

Can be viewed as an all-loop effective action of the non-Abelian bosonized Thirring model [ltsios, Sfetsos, Siampos '14]

$$
S_{k, \lambda}[g]=S_{\mathrm{WZW}, k}[g]+\lambda \frac{k}{\pi} \int d^{2} \sigma \operatorname{Tr}\left(J_{+} J_{-}\right)
$$

$$
S_{k, \lambda}[g]=S_{\mathrm{WZW}, k}[g]+\lambda \frac{k}{\pi} \int d^{2} \sigma \operatorname{Tr}\left(J_{+}\left(1-\lambda \mathrm{Ad}_{g}\right)^{-1} J_{-}\right)
$$

has many interesting properties:

1. Integrable
2. 'S-duality' $\quad S_{-k, \lambda^{-1}}\left[g^{-1}\right]=S_{k, \lambda}[g]$
3. Interpolates between WZW $(\lambda=0)$ and non-Abelian T-dual of PCM $(\lambda=1)$
4. Poisson-Lie T-dual to η-model $(|\lambda|=1)$

Gauged version: [Hollowood, Miramontes, Schmidtt '14]

$$
S_{G / G, \lambda}[g, A]=S_{\mathrm{WZW}, k}[g]-\frac{k}{\pi} \int d^{2} \sigma \operatorname{Tr}\left(A_{-} J_{+}+A_{+} J_{-}+A_{-} g A_{+} g^{-1}-\lambda^{-1} A_{+} A_{-}\right)
$$

Gauge field acts as a Lagrange multiplier

$$
A_{ \pm}=\frac{\lambda}{1-\lambda \operatorname{Ad}_{g^{ \pm 1}}} J_{ \pm}
$$

On-shell, recover the λ-deformed WZW model.

Hodge Theory from λ-deformations
 [Grimm, JM '21]

A natural ansatz is given by

$$
g=z^{Q}, \quad A_{ \pm}= \pm i \alpha \partial_{ \pm} Q, \quad Q=h Q_{\mathrm{ref}} h^{-1}
$$

A natural ansatz is given by

$$
g=z^{Q}, \quad A_{ \pm}= \pm i \alpha \partial_{ \pm} Q, \quad Q=h Q_{\mathrm{ref}} h^{-1}
$$

E.o.m. of the gauge fields precisely constrains the charge components

$$
\left(h^{-1} \partial_{ \pm} h\right)_{ \pm q}=0, \quad \text { unless } \quad b(q):=\alpha q-\frac{1-z^{q}}{\lambda^{-1}-z^{q}}=0
$$

A natural ansatz is given by

$$
g=z^{Q}, \quad A_{ \pm}= \pm i \alpha \partial_{ \pm} Q, \quad Q=h Q_{\mathrm{ref}} h^{-1}
$$

E.o.m. of the gauge fields precisely constrains the charge components

$$
\left(h^{-1} \partial_{ \pm} h\right)_{ \pm q}=0, \quad \text { unless } \quad b(q):=\alpha q-\frac{1-z^{q}}{\lambda^{-1}-z^{q}}=0
$$

special case: $\quad z=-1$ (Weil operator)

$$
h^{-1} \partial_{ \pm} h=\left(h^{-1} \partial_{ \pm} h\right)_{0}+\left(h^{-1} \partial_{ \pm} h\right)_{ \pm 1}
$$

The remaining e.o.m. of g furthermore impose

$$
\lambda= \pm i \quad+\quad \text { Nahm's equations }
$$

The latter can be interpreted as arising from minimizing the worldvolume of the string w.r.t. the Hodge metric.

Conclusion

One-parameter period maps provide a subset of the classical solutions to the λ-deformed WZW model.

Conclusion

One-parameter period maps provide a subset of the classical solutions to the λ-deformed WZW model.

Next up:

1. Insights into asymptotic Hodge theory?
2. Role of integrability?

Thank you!

