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Can think of the period map as a group-valued field on the moduli space,
with some gauge symmetry group V.
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Idea: formulate dynamics in terms of a non-linear sigma model
[Grimm "20] [Cecotti ‘20]



The Period Map



Introduce a real, group-valued field

H"(x,y) = h(z, y)Hf

ref




To rephrase the data in the reference Hodge structure, introduce the
(reference) charge operator [Robles ’16; Kerr, Pearlstein, Robles ‘19]
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Qrefv — 5(}9 — Q)Ua vV C er’g ) Qref - zg

e.g. er’? has ‘charge’ 3/2.

Similarly, get a charge decomposition of operators

O=> 04, [Quet:0g)=0q0,, O€gc
q






The period map satisfies the horizontality condition [Griffiths ’68; Schmid 73]
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The period map satisfies the horizontality condition [Griffiths ’68; Schmid 73]

h=loLh = (W '01h)o + (K '0Lh) 1y

A more familiar relation is perhaps

Qe HY, o0 e H>Y ¢ H>!
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A-Deformed WZW Models



Action of the A-deformed WZW model: [Sfetsos ‘14]
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Can be viewed as an all-loop effective action of the non-Abelian bosonized
Thirring model [Itsios, Sfetsos, Siampos ‘14]

k
Sk?)\[g] — SWZW,k[g] -+ A; /d20' Tr (J_|_J_)
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4.

k _
Sk,/\[g] — Swzwjk[g] - )\; /d20' Ir (J_|_ (1 — )\Adg) ! J_)

has many interesting properties:
Integrable
‘S-duality’  S_g - [9_1] = Sk,al9]
Interpolates between WZW (A=0) and non-Abelian T-dual of PCM (A=1)

Poisson-Lie T-dual to n-model (|A|=1)



Gauged version: [Hollowood, Miramontes, Schmidtt ‘14]

k
Sc/a a9, Al = Swzw klg]—— /dsz Tr(A_Jy+ A J +A gAg — A TALA)
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Gauge field acts as a Lagrange multiplier

B A
1= )\Adgil

Ay S

On-shell, recover the A-deformed WZW model.



Hodge Theory from A-deformations
[Grimm, JM ‘21]



A natural ansatz is given by

Ay = tia 8:EQ7

Q — hQrefh_l
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A natural ansatz is given by

g=29,  Ai=4i00:Q, Q=hQuh !

E.o.m. of the gauge fields precisely constrains the charge components

_ 1 — 24
(h='0+h)x, =0, unless b(q) == aq — eyl 0

special case: z =-1 (Weil operator)

h™ 10 h = (h_laih)o + (h_laih)il




The remaining e.o.m. of g furthermore impose

A= 1$1 -+ Nahm’s equations

The latter can be interpreted as arising from minimizing the worldvolume
of the string w.r.t. the Hodge metric.



Conclusion

One-parameter period maps provide a subset of the classical solutions
to the A-deformed WZW model.
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Next up:

1. Insights into asymptotic Hodge theory?
2. Role of integrability?



Thank you!



